
 SDCard HxC Floppy Emulator HFE File format

Rev.3.1 - 05/22/2019

HFE HxC Floppy Emulator file format
(Note : All data in this file are subject to changes)

Changes :

29 November 2010 – v1.0 : Initial version.
20 June 2012 – v1.1 : Add single_step, track0s0/1_altencoding and track0s0/1_encoding

 header fields.
8 July 2012 – v2.0 : Add opcodes support in stream (HFEv2).

4 August 2017 – v3.0 : Opcodes redefinition/redesign.
22 May 2019 – v3.1 : Add weakbits support on HFEv3.

Description

The HFE file format is a simple floppy bitstream tracks container originally designed
for the SD HxC Floppy Emulator hardwares. It stores the floppy media content at the bit-cell

level.

What means « HFE » ?

HFE is the acronyme of HxC Floppy Emulator. The HxC Floppy emulators are a

series of universal floppy emulators. This format was originally designed for these emulators.

(see https://hxc2001.com)

Why the HFE format ?

There are many floppy image formats for every system family. Supporting all of them

in a floppy emulator incresase the firmware complexity and the higher the firmware

complexity, the more difficult it is to read the code and maintain it, and the higher the

likelihood of faults and defects. In addition to that, some of these formats cannot be supported

without increasing hardware cost (Example: Compressed formats that need a lot of RAM to

be unpacked).

Beside this, most of these formats are missing some critical information to emulate or

reproduce the floppy media properly: Most of them don’t store the low-level disk layout and

encoding informations. You then need to setup a kind configuration file to tell the emulator

how to read them. The emulator developer can also make some guessing functions to load

them, which can be prone to error, especially when you target a large set of machines.

The HFE format is a new MFM/FM or GCR encoded floppy file image format. The

HFE format keeps intact all the informations present on the floppy disks : Sectors metadata

and data, error detection codes (CRC), all gaps and so on. Unlike the older raw data images

like IMG, this file format is designed to support most of the existing floppy formats and keeps

intact all the floppy format metadata. No more guessing or configuration needed to be able to

read the images !

HxC Floppy Emulator Project
© 2006 – 2024 HxC2001

https://hxc2001.com/
https://torlus.com/floppy

1/7

 SDCard HxC Floppy Emulator HFE File format

Rev.3.1 - 05/22/2019

From a safety and data integrity point of view, the HFE keeps intact and doesn’t

bypass the original disk controller data integrity checking mechanisms. The machine still able

to check that the data loaded from the flash memory media (USB, SDCard…) is valid. The

full data path still protected by the original sectors checksums.

To sum up : The HFE store the low level bits present on the floppy media, and this

make it particulary accurate to emulate most of the floppy formats.

HFE overall structure

The HFE file format contains a file header with metadata like the number of tracks in
the file, track format ID, floppy interface configuration…

The second part is a tracks offsets and sizes array.

And finally all the tracks bitstream buffers.

HxC Floppy Emulator Project
© 2006 – 2024 HxC2001

https://hxc2001.com/
https://torlus.com/floppy

2/7

Figure 1: HFE format structure

 SDCard HxC Floppy Emulator HFE File format

Rev.3.1 - 05/22/2019

First part : 0x0000-0x0200 (512 bytes) : HFE header

typedef struct picfileformatheader_
{
0x000 uint8_t HEADERSIGNATURE[8]; // “HXCPICFE” for HFEv1 and HFEv2,

// “HXCHFEV3” for HFEv3
0x008 uint8_t formatrevision; // 0 for the HFEv1, 1 for the HFEv2. Reset to 0 for HFEv3.

0x009 uint8_t number_of_track; // Number of track(s) in the file
0x00A uint8_t number_of_side; // Number of valid side(s) (Not used by the emulator)
0x00B uint8_t track_encoding; // Track Encoding mode

// (Used for the write support - Please see the list above)
0x00C uint16_t bitRate; // Bitrate in Kbit/s. Ex : 250=250000bits/s

// Max value : 1000
0x00E uint16_t floppyRPM; // Rotation per minute (Not used by the emulator)
0x010 uint8_t floppyinterfacemode; // Floppy interface mode. (Please see the list above.)

0x011 uint8_t dnu; // Reserved
0x012 uint16_t track_list_offset; // Offset of the track list LUT in block of 512 bytes

// (Ex: ‘1’ means offset 0x200, ‘2’ means 0x400 ...)
0x014 uint8_t write_allowed; // 0x00 : Write protected, 0xFF: Unprotected

// v1.1 addition – Set them to 0xFF if unused.
0x015 uint8_t single_step; // 0xFF : Single Step – 0x00 Double Step mode
0x016 uint8_t track0s0_altencoding; // 0x00 : Use an alternate track_encoding for track 0 Side 0

0x017 uint8_t track0s0_encoding; // alternate track_encoding for track 0 Side 0
0x018 uint8_t track0s1_altencoding; // 0x00 : Use an alternate track_encoding for track 0 Side 1
0x019 uint8_t track0s1_encoding; // alternate track_encoding for track 0 Side 1
}picfileformatheader;

Note : uint16_t fields are in little endian format (LSB first).

Note : Unused header bytes must be set to 0xFF.

Note : The header structure must be packed.

floppyinterfacemode values :

#define IBMPC_DD_FLOPPYMODE 0x00
#define IBMPC_HD_FLOPPYMODE 0x01

#define ATARIST_DD_FLOPPYMODE 0x02
#define ATARIST_HD_FLOPPYMODE 0x03

#define AMIGA_DD_FLOPPYMODE 0x04
#define AMIGA_HD_FLOPPYMODE 0x05

#define CPC_DD_FLOPPYMODE 0x06
#define GENERIC_SHUGGART_DD_FLOPPYMODE 0x07

#define IBMPC_ED_FLOPPYMODE 0x08
#define MSX2_DD_FLOPPYMODE 0x09

#define C64_DD_FLOPPYMODE 0x0A
#define EMU_SHUGART_FLOPPYMODE 0x0B

#define S950_DD_FLOPPYMODE 0x0C
#define S950_HD_FLOPPYMODE 0x0D

#define DISABLE_FLOPPYMODE 0xFE

HxC Floppy Emulator Project
© 2006 – 2024 HxC2001

https://hxc2001.com/
https://torlus.com/floppy

3/7

 SDCard HxC Floppy Emulator HFE File format

Rev.3.1 - 05/22/2019

track_encoding / track0s0_encoding / track0s1_encoding values :

#define ISOIBM_MFM_ENCODING 0x00

#define AMIGA_MFM_ENCODING 0x01
#define ISOIBM_FM_ENCODING 0x02

#define EMU_FM_ENCODING 0x03
#define UNKNOWN_ENCODING 0xFF

Note :

If track0s0_altencoding is set to 0xFF, track0s0_encoding is ignored and track_encoding is

used for track 0 side 0.

If track0s1_altencoding is set to 0xFF, track0s1_encoding is ignored and track_encoding is
used for track 0 side 1.

Second part : (up to 1024 bytes) : Track offset LUT

typedef struct pictrack_

{
uint16_t offset; // Track data offset in block of 512 bytes (Ex: 2 = 0x400)

uint16_t track_len; // Length of the track data in byte.
}pictrack;

A 82 tracks disk the pictrack table use 82 entries.

Pictrack[82];

Note : uint16_t fields are in little-endian format.

HxC Floppy Emulator Project
© 2006 – 2024 HxC2001

https://hxc2001.com/
https://torlus.com/floppy

4/7

 SDCard HxC Floppy Emulator HFE File format

Rev.3.1 - 05/22/2019

Third part : Track data

A track data contains a track bitstream. Each bit represent is a cell state. A track can

contain a MFM / FM / GCR or a custom encoding.

The track is divided in 512 Bytes blocks and each block contains a part of the Side 0
track and a part of the Side 1 track:

Figure 2 : HFE track data

The bits transmission order to the FDC is LSb first :

Bit 0-> Bit 1-> Bit 2-> Bit 3-> Bit 4-> Bit 5-> Bit 6-> Bit 7->(next byte)

Transmission rate cell rate = Header bitrate * 2

Cell time = 1 / (Header bitrate * 2)

Note :
The bitstream content is specific to each targeted system and disk format ! The low

level floppy disk controller track and sectors formats descriptions is not covered by this
document ! For more floppy disks related informations, please have a look to these

documentations : https://hxc2001.com/download/datasheet/floppy/thirdparty/

HxC Floppy Emulator Project
© 2006 – 2024 HxC2001

https://hxc2001.com/
https://torlus.com/floppy

5/7

 SDCard HxC Floppy Emulator HFE File format

Rev.3.1 - 05/22/2019

HFE v2 and v3 variants

HFE variants v2 and v3 support opcodes into the tracks bitstreams. These opcodes
make possible to reproduce “variable bitrate” area, weak/fuzzy bits and other types of

particularities of certain disks.
Regarding the file structure, apart from the “formatrevision” and

“HEADERSIGNATURE” fields, these variants are structurally identical to HFEv1.

General principle

The opcodes insertion allows the modulation of the bitrate, the generation of “weak
bits”, and compensate the 2 sides timings. The hfev3 encoder inserts these different opcodes

in the track at regular intervals in order to reach the areas average bitrate of the original disc
and to compensate the temporal shifts between sides 0 and 1 generated by the bitrate sides

differences and opcodes insertion.

This general principle was used for the first time in the USB HxC Floppy Emulator
from 2008. It was then implemented in the SD HxC Floppy Emulator with HFEv2 and then

transposed to the HxC Floppy Emulator firmware for Gotek in HFEv3 .

Note : For conventional, industrial and medical usages, it is recommended to not use these
variants. They were designed for specific use cases and still in experimental state !

HFE v2

 The HFE v2 is basically the same format as the HFE v1. It just add 4 bytes opcodes support.

Opcode Encoding Description

SET BAUDRATE 0x00 0x01 BR XX Set bitrate

BR = PIC18F SPBRG Register
RANDOM 0x00 0x02 RD XX Generate random pulses during

8 cells.
DATA OPCODE 0x00 0x03 DD XX Transmit arbitrary data

« DD ».
SET INDEX STATE 0x00 0x04 II XX Set/Clear the index signal

according to the « II » bit 0
state.

NOP 0x00 0x05 XX XX Do nothing – used to align side
0 and side 1 stream.

BREAK BUFFER 0x00 0x06 XX XX Jump to the next 512 bytes
track buffer.

SET WRITEMODE 0x00 0x07 WM XX Change / select the track write
mode

HxC Floppy Emulator Project
© 2006 – 2024 HxC2001

https://hxc2001.com/
https://torlus.com/floppy

6/7

 SDCard HxC Floppy Emulator HFE File format

Rev.3.1 - 05/22/2019

HFEv3

The HFEv3 is an optimized version of the HFEv2 : Opcodes are shorter and easier to decode

Opcode Encoding Description

NOP 0xF0 Do nothing

SET INDEX 0xF1 Start an Index pulse.
SET BITRATE 0xF2 0xBB BB : Cells-rate in k/samples per

seconds.
SKIP BITS 0xF3 0xLL Skip « LL » bits (0-7)

RAND 0xF4 Do nothing – used to align side 0 and
side 1 stream.

-- Reserved -- 0xFF

p

HxC Floppy Emulator Project
© 2006 – 2024 HxC2001

https://hxc2001.com/
https://torlus.com/floppy

7/7

